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Abstract 

The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat 
exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantita‑
tive exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to charac‑
terize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated 
interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also 
used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differ‑
ences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient 
weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to 
desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum 
outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we 
observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated 
opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and ame‑
lioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions 
tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership 
was a large part of the success of the mixed methods approach.
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Introduction
The growing frequency, intensity, and duration of 
extreme heat events necessitates increased focus 
on reducing heat exposures [1]. Heat exposure is 

associated with numerous adverse health outcomes, 
including poor sleep quality, premature mortality, 
and health care utilization due to cardiovascular dis-
ease, renal disease, kidney stones, and diabetes [2]. 
These heat-related outcomes disproportionately occur 
among outdoor workers, older populations, indi-
viduals experiencing homelessness, Black adults and 
people with lower socio-economic status [3, 4]. Tem-
peratures are elevated in urban neighborhoods due 
to higher retention of heat from the sun in dark and 

Open Access

*Correspondence:  cmilando@bu.edu

1 Department of Environmental Health, School of Public Health, Boston 
University, 715 Albany St, Boston, MA 02118, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-022-14692-7&domain=pdf


Page 2 of 11Milando et al. BMC Public Health         (2022) 22:2314 

impervious surfaces, a phenomenon known as the 
urban heat island effect [5]. Furthermore, residents in 
these communities may lack adaptive infrastructure to 
reduce the risk of adverse impacts (e.g., air condition-
ers or access to community cooling centers).

Common techniques for assessing temperature 
exposures may not accurately characterize personal 
exposures amenable to intervention, especially among 
vulnerable populations. The majority of heat-and-
health studies rely on meteorological data from out-
door weather stations, remotely sensed imagery, or 
statistical models [6], which each are proxies for expo-
sure and typically do not include variation in individ-
ual vulnerabilities nor temperature extremes at a fine 
scale [7–9]. A long study duration is essential for estab-
lishing a counterfactual baseline to exposures during 
unplanned extreme heat events. Some recent studies 
have measured stationary temperature measurements 
as personal exposure proxies over long durations – 
for three months in homes in Detroit, Michigan, US 
[10], and for six weeks at traffic stops in Ahmedabad, 
Gujarat, India [11]. Characterizing risks related to heat 
using quantitative temperature metrics alone omits 
insight on psychological, physiological, behavioral, and 
social factors that modify the heat and health relation-
ship for individuals [12]. Mixed research methods that 
integrate qualitative and quantitative data provide an 
avenue for holistically informing heat resiliency inter-
ventions across vulnerable individuals’ differing expe-
riences of heat exposure and adaptation [13].

We used mixed research methods to assess indi-
vidual experiences of heat exposure and adaptation 
during August and September of 2020 in two urban 
communities in the Boston area of Massachusetts. 
This work represents the first phase of the Chelsea 
and East Boston Heat Study (C-HEAT), a partnership 
between a local environmental justice organization 
and an academic institution. The goal of C-HEAT is to 
pursue strategies relevant to heat adaptation, coordi-
nated with residents, city officials from various munic-
ipal branches, and non-profit organizations.

Methods
Project location
We conducted this study in the City of Chelsea (situ-
ated northeast of the City of Boston) and the East Bos-
ton neighborhood of the City of Boston (Figure S1), 
adjacent localities that rank third and fifth respectively 
as the most environmentally overburdened communi-
ties in Massachusetts [14]. Both communities experi-
ence urban heat island effects [15], and prior survey 
results indicated residents may be less aware of heat 

exposure risks and may lack the economic and politi-
cal resources to cope with extreme heat [16, 17].

Participant recruitment
Participant recruitment was led by GreenRoots, Inc., a 
grassroots environmental justice organization that has 
worked in Chelsea and East Boston for the last two dec-
ades [18], including in partnership with  investigators at 
Boston University School of Public Health (BUSPH) [19, 
20]. GreenRoots widely distributed digital and physical 
bilingual English and Spanish recruitment materials to 
GreenRoots members and in the communities. Inclusion 
criteria were being at least 18 years old, owning a smart-
phone and being willing to use it for research purposes, 
English or Spanish language proficiency, residing in Chel-
sea or East Boston at current residence for greater than 
one year, and planning to live at current residence for at 
least 6 months. We aimed to recruit up to 30 participants 
for this study. The Boston University Medical Campus 
Institutional Review Board approved all study protocols.

Data collection and analysis
Qualitative interview data
We conducted an initial baseline interview, short weekly 
check-in interviews, and an exit interview (Fig.  1a). All 
were highly structured and included closed and open-
ended questions, designed based on previous studies as 
well as topics of interest to community organizations 
[20–25]. All interviews were conducted via Zoom in Eng-
lish or Spanish, with participant responses entered into 
Qualtrics™. The baseline interview included questions 
about residential air conditioning, daily activities, sleep 
and hydration habits, occupation, transportation, health, 
and attitudes and behaviors for coping with the heat. The 
weekly check-in assessed thermal comfort and control 
[21, 22]. The exit interview asked about the experience of 
participating in the study. (See Supplemental Materials 
for interview guides).

Personal heat exposure, environmental temperature, 
and biometrics
We collected location, biometric, and temperature data 
for each participant using Bluetooth-enabled low-cost 
sensors with minimal battery requirements, and devel-
oped software to retrieve sensor data (Fig. 1b). Participant 
location was recorded every 10  min using a Tile Mate 
(San Mateo, California, US), with a horizontal position 
accuracy specific to each participant’s smartphone, e.g., 
7 to 13 m for an iPhone 6 [26]. The Mate was attached to 
a keychain given to each participant. One-minute inter-
val heart rate and step count, and nightly sleep data were 
collected via a Fitbit Inspire HR sport watch (Fitbit, San 
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Francisco, CA, US). Recent evaluation of the predecessor 
to the Inspire HR showed a mean absolute error in heart 
rate of 7.3 bpm when at rest and 12.8 bpm during activity 
[27], and a slight underestimation of step counts, approx-
imately 12.5% in a cohort of healthy older adults [28]. A 
meta-analysis showed that the Fitbit sleep data algorithm 
provides an adequate summary of nightly sleep patterns 
[29]. Temperature was recorded every 10  min using 
HOBO meteorological sensors (Onset, Cape Cod, MA, 
US) in the personal, indoor, and outdoor environments. 
For personal and indoor measurements, we used the 
HOBO MX1101, which has an accuracy of ± 0.2 °C (from 
0° to 50 °C). We attached the personal HOBO to the key-
chain containing the Tile Mate. We remotely guided the 
participants through installing the indoor HOBO on a 
wall in the participant’s bedroom away from any air con-
ditioning (AC) unit or window. We captured outdoor 
meteorological data by placing 30 outdoor HOBO sen-
sors on streetlamps and street-adjacent trees in Chelsea 
and East Boston. We compared outdoor temperature 
and relative humidity measurements to concurrent data 
collected at a local National Weather Service (NWS) 
station at the Boston Logan International Airport (Lati-
tude: 42.361° N; Longitude: -71.01° W). We developed 

Python scripts to retrieve participant data from third-
party online databases and uploaded to HIPAA-compli-
ant Office365 Sharepoint Lists. Ten-minute temperature 
measurements were averaged to create hourly estimates 
for analysis. Further details about the methods and data 
cleaning are available in the Supplemental Methods.

Analysis
For this analysis, we highlighted key findings related 
to heat resiliency interventions, using a range of tem-
perature metrics. We examined differences in hourly 
personal, indoor, and outdoor temperatures dur-
ing times when participants were within 5  km of their 
home address (Temperature metrics). We used the 
non-parametric Wald test to compare differences in 
hourly temperatures at various distribution percentiles 
[30], and the Spearman correlation coefficient to exam-
ine correlations in  temperature metrics. We examined 
the impact of weekly (self-reported) AC use on indoor 
daily maximum temperatures using a linear mixed 
effect model, with fixed effects for outdoor maximum 
temperature, weekly AC use, an interaction term for 
outdoor maximum temperature and AC use, and a ran-
dom intercept by participant (Air conditioning use and 

Fig. 1  Schematic of (a) mixed methods study design and (b) remote exposure, location, and biometric data collection methods. Participants were 
given the three exposure collection devices described on the left side of panel (b)
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efficacy). We examined differences in sleep duration 
(measured by FitBit) when participants were at home 
(i.e., within 100 m of their home address) as a function 
of mean indoor temperature during each participants’ 
sleep hours (estimated from FitBit data), using linear 
mixed effects modeling and controlling for weekday and 
weekend (Variations in sleep with indoor temperature). 
We summarized heterogeneity in time away from home 
on hot days, defined as days with maximum daytime 
hourly outdoor temperatures above 26.5  °C (80 °F, a 
common temperature threshold for extreme heat [31]), 
and added context with information from baseline and 
weekly surveys (Variations in physical activity with out-
door temperature).

Finally, we analyzed all interview responses for key 
themes and prepared descriptive statistics to highlight 
opportunities for heat resiliency and adaptation strate-
gies (Participant heat experiences and heat adaptation 
practices). All statistical analyses were conducted in R 
(version 4.1.3) [32]; linear mixed effects modeling was 
accomplished using the package lmer  [33].

Results
We enrolled and conducted baseline interviews with 
24 participants, most of whom lived in Chelsea, were 
female, self-identified as Hispanic/Latina/o, and were 
renters in multi-family housing (Table 1). One partici-
pant was unable to complete the device configuration 
process, and another was lost to follow-up. Therefore, 
we collected temperature and biometric data with 22 
of 24 participants for between 6–8  weeks. Data col-
lected using our methodology demonstrated good 
quality and interpretable outputs, with data capture 
ranging from 75 to 96% of expected. Further details on 
participant recruitment and data cleaning are available 
in the Supplemental Results. In the following sections, 
we present findings that leverage our mixed methods 
approach and provide useful insights for future heat 
resiliency data collection and intervention efforts in 
the Boston Area.

Temperature metrics 
The median ambient hourly temperature was 20.6  °C, 
with peaks in the early afternoon of each day and lows 
in the early morning. On average, the distribution of per-
sonal hourly temperatures was largely higher than those 
measured outdoors in the study area and at the NWS 
station (Table  2), but similar to temperatures measured 
indoors (reflecting the high percentage of time spent in 
indoor residential environments). At the 50th percen-
tile of hourly temperature distributions, personal tem-
peratures were higher than outdoor local and NWS 

monitors by 2.9 (95% CI: 2.3, 2.5) and 3.9  °C (95% CI: 
3.3, 4.5), respectively. The largest differences in tempera-
tures occurred at the 5th and 25th percentiles, indicating 
that personal temperatures were elevated especially at 
the lower end of the distribution – likely reflecting dif-
ferences at nighttime and the temperature lag between 
indoor and outdoor environments. Personal tempera-
tures were not well correlated over time with outdoor 
temperatures, with Spearman correlation coefficients of 
0.14 and 0.14 with outdoor local and NWS temperatures 
(for comparison, the Spearman correlation coefficient 
between outdoor local and NWS was 0.51, and between 
personal and indoor was 0.50). Similarly, indoor temper-
ature was not well correlated with outdoor temperature 
(R2 = 0.13).

Table 1  Participant demographics and housing characteristics 
(N = 24)

a includes American Indian or Alaska Native, Asian, Black or African American, 
and unknown

Variable N (%)

Home city:

  Chelsea 17 (71)

  East Boston 7 (29)

Sex:

  Female 18 (75)

  Male 6 (25)

Race/Ethnicity:

  Hispanic/Latina/o 11 (46)

  Non-Hispanic White 6 (25)

  Other a 7 (29)

Age (years):

  22 – 30 5 (21)

  31 – 39 7 (29)

  40 – 64 8 (33)

  65 – 78 4 (17)

Language:

  Spanish 11 (46)

  English 13 (54)

Foreign-born:

  Yes 11 (46)

  No 13 (54)

Housing type:

  Multi-family/Apartment 22 (92)

  Single family 2 (8)

Rent/Own

  Rent 20 (83)

  Own 4 (17)

Air Conditioning type:

  Window/Wall 17 (71)

  Central 7 (29)
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Air conditioning use and efficacy
AC units for participants in this study did not adequately 
control indoor temperatures to desired thermostat lev-
els. All participants reported having some form of AC 
(with 17 of 24 participants having window or wall units), 
however, 19 of 24 participants still described conditions 
in their homes at baseline as either “warm” or “hot.” 
Of participants with wall or window AC units, only 4 
reported that their AC units were adequate to keep them 
cool enough. AC use was common throughout the study 
duration: only 6 participants reported not using their AC 

during a weekly interview, with 7  weeks total of no AC 
use across all participants. However, when AC was used 
(513 of 563  days), indoor maximum temperatures still 
increased with increasing outdoor temperatures (Fig. 2), 
quantified as a regression slope with a 0.24 °C increase in 
indoor maximum temperature per 1  °C increase in out-
door maximum temperature (95% CI: 0.22, 0.27). Most 
maximum daily indoor temperatures were well above 
the highest reported temperature AC setpoint from the 
baseline interview, 23.8 °C (75°F), and many reported set-
points were much lower (15.5 to 18.3 °C). No plateau of 

Table 2  Personal, indoor, outdoor, and nearest weather station temperature values and differences at the 5th to 95th percentile for 
hourly temperature distributions recorded over summer 2020

NWS national weather station, CI confidence interval
a Differences at various percentiles were calculated using the Wald Test (significant differences are bolded)

Percentile

5th 25th 50th 75th 95th

Personal temperature (°C) 19.4 22.4 24.5 26.1 28.9

Indoor temperature (°C) 19.5 22.6 24.3 25.8 28.2

Outdoor local temperature (°C) 15.7 19.1 21.5 24.0 27.9

Outdoor NWS temperature (°C) 15.0 18.1 20.6 22.8 27.2

Difference (°C) between personal and indoor temperature (95% CI)a -0.1 (-0.5, 0.2) -0.2 (-0.6, 0.2) 0.2 (-0.04, 0.5) 0.4 (0.1, 0.6) 0.8 (0.4, 1.1)
Difference (°C) between personal and local temperature (95% CI)a 3.7 (2.4, 4.9) 3.2 (2.5, 3.9) 2.9 (2.3, 3.5) 1.9 (1.4, 2.4) 0.9 (-0.3, 2.1)

Difference (°C) between personal and NWS temperature (95% CI)a 4.4 (3.1, 5.6) 4.3 (3.7, 5.0) 3.9 (3.3, 4.5) 3.3 (2.8, 3.8) 1.7 (0.5, 2.9)

Fig. 2  Participant level indoor versus outdoor maximum daily temperatures, stratified by AC used (n = 513 days) and no AC used (n = 50 days). Plot 
generated from linear mixed effects regressions with random intercept by participant
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indoor temperatures was reached when AC units were in 
use; such a plateau would indicate that an AC unit had 
enough cooling capacity to maintain an indoor tempera-
ture regardless of increased outdoor temperature. For the 
limited times when AC was not used (50 of 563  days), 
there was relatively little change in indoor maximum 
temperature as a function of outdoor temperature (the 
regression slope was a 0.05  °C increase in indoor maxi-
mum temperature per 1  °C increase in outdoor maxi-
mum temperature, with 95% CI: -0.14, 0.24). This result 
is likely biased by temporality (which we were not pow-
ered to control for): all but two no-AC weeks were at the 
end of September when outdoor maximum temperatures 
occurred in narrower range than in mid-summer peri-
ods, and when nighttime temperatures were cool enough 
to alleviate the need for nighttime AC.

Variations in sleep with indoor temperature
We did not observe a statistically significant relation-
ship between higher indoor temperatures and reduced 
sleep duration (Fig.  3). For example, on weeknights 
(n = 235 nights, an average of 13.8 nights per person), 
the fixed effect of regression slope was -0.05  h of sleep 
per 1  °C increase in mean indoor temperature during 
sleep time (95% CI: -0.16, 0.05). We did not control for 
many individual determinants of sleep, including time of 
sleep onset (e.g., 11 pm versus 2am), which undoubtedly 
influenced model performance. The sleep findings from 
weekly questionnaires offered a similar picture to these 

quantitative findings, as most participants did not report 
major disruptions in weekly sleep. Out of 148 weekly 
check-ins (average of ~ 6 per participant) participants 
reported ‘more disrupted than usual’ sleep 26 times, ‘bet-
ter than usual’ sleep 25 times, and ‘same as usual’ sleep 95 
times. However, a total of 13 participants reported dis-
rupted sleep at least once, indicating some heterogenity 
in sleep quality across participants. Visual inspection of 
weekend and weekday plots indicates clustering and non-
linearity in sleep times per person as a function of indoor 
temperature.

Variations in physical activity with outdoor temperature
Trends between temperature and daytime physical 
activity were difficult to discern, although there were 
some visually observable patterns (Fig. 4). On weekdays 
where the daily maximum temperature was greater than 
26.5 °C, 5 of 18 participants spent less time at home (by 
an average of 30 min or more), 4 of 18 participants spent 
more time at home (by an average of 30  min or more), 
and 9 participants stayed at home for approximately 
the same amount of time on average (average difference 
within 30 min). We observed similar groupings on week-
ends, although there were fewer weekend days with data 
and fewer weekend days with maximum temperatures 
above 26.5  °C. These strata are descriptive and reflect 
the cutpoints used (26.5  °C, 30  min differences, within 
100  m of home); still, they describe a range of behav-
ior patterns related to heat that could be considered in 

Fig. 3  Sleep duration (hrs) and average bedroom temperature during sleep time (°C) of N = 308 person-nights where participants were within 
100 m of their home address
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future planning. Qualitative data support this finding of 
heterogeneous behavior changes on hot days; 11 of 24 
participants reported intentionally changing modes of 
transportation on hotter days. On 19 of 148 weekly total 
check-ins, a participant included ‘Leave the house for a 
cooler area’ as one of their first three strategies used to 
cool down on a hot day. Participants who did leave their 
homes to cool off reported seeking either a friend’s home 
or business with AC, or going outside for a walk or to a 
park.

Participant heat experiences and heat adaptation practices 
Qualitative data revealed several additional opportuni-
ties for heat adaptation interventions. Concerns related 
to heat were varied; 10 participants reported “not being 
concerned at all” about their own personal health risks 
related to heat,  nine participants reported either being 
“moderately” or “extremely” concerned about personal 
heat-related illness,  and 16 of 24 participants reported 
feeling worried for others in their household or commu-
nity. Nine participants reported having to make choices 
about which bills to pay, and nine also reported that 
extreme temperatures influence which bills are paid (with 
some overlap in the two responses). The most popu-
lar heat adaptation strategies were using AC, removing 
clothing, and opening windows. While using window 
shades can decrease indoor solar heat gain, it was ranked 
as one of the least popular strategies, suggesting the 
potential for cooling interventions that include instal-
lation of these devices in homes. Roughly half of our 

participants (13 of 24) reported not ever leaving their 
homes to seek a cool shelter, indicating that for some, the 
home is the primary place of refuge during extreme heat 
events. Adequate hydration is an essential heat adapta-
tion strategy, however, 10 of 24 participants reported 
not drinking enough water, based on their own determi-
nation of “enough”. During exit interviews, participants 
reflected on increased awareness of heat-related illness, 
identification of barriers to keeping cool (e.g., utility cost, 
difficulty staying hydrated, difficulty finding cool places 
to go outside the home), and provided valuable feedback 
for intervention suggestions (e.g., subsidies for utility 
costs on hot days, desire for greater access to and avail-
ability of local parks).

Discussion
We used mixed research methods to integrate numerous 
data sources on heat exposure, heat adaptation strate-
gies, and sleep and physical activity variation from late 
summer to early fall 2020 in the Boston area. The vari-
ability in our findings supports the utility of capturing 
personal-level data, as personal-level temperatures were 
the highest recorded of any data stream and were not 
correlated in time with ambient metrics. AC units did 
not adequately control indoor temperatures. Sleep dura-
tion was not associated with warmer indoor tempera-
tures. On warmer days, we observed a range of percent 
time-at-home, expected given our small study size. Exit 
interviews identified several possible intervention top-
ics, including hydration, window shades, correct sizing 

Fig. 4  Difference in a participant’s average time spent within 100 m of home on days when the maximum daily temperature was above or below 
26.5 °C. Each pair of connected points represents data for a single participant. If the average difference in time spent at home was less than 30 min, 
the connected points were labeled ‘Approximately similar’. If the difference in time spent at home exceeded 30 min, the connected points were 
grouped into the ‘Less time at home’ or ‘More time at home’ categories, respectively. Participants may have lines in multiple panels, as data are 
grouped by weekday vs. weekend
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of AC, subsidized energy bills for AC use, and facilitating 
cooler modes of transportation. Qualitative data streams 
contextualized analyses and provided insights into adap-
tive behaviors not captured in the quantitative data. 
These insights are essential for tailoring heat resiliency 
interventions for specific populations and locations.

The mixed methods approach of the study was 
strengthened by the community-academic partnership, 
which allowed us to navigate challenges of recruitment 
and retention in predominantly low-income neighbor-
hoods during the onset of the COVID-19 pandemic. The 
COVID-19 prevalence in Chelsea and East Boston was 
many times higher than neighboring communities [34]. 
Income, immigration status, and education in major-
ity low-income and Hispanic communities, the “most 
digitally underserved in the U.S.” [35], modify a fam-
ily’s ability to adopt new technologies [36]. These fac-
tors necessitated developing strong relationships with 
study participants responsible for setting up and col-
lecting their personal data. In addition, this partnership 
enhanced the feasibility of remote qualitative and quan-
titative data collection methods, which are generalizable 
to other studies in resource-limited or physically distant 
settings and can serve to contextualize public health 
interventions with participant experiences.

Limitations
Our protocols yielded substantive high-quality data with 
some limitations in the methods and impacts on gener-
alizability. Incorporating more open-ended interview 
questions would have better captured the nuances of par-
ticipants’ experiences and current adaptation practices 
for extreme heat. Requiring ownership and operating 
proficiency of a smartphone biases the population sam-
ple towards individuals more likely to be able to accom-
plish the study methods. Smartphone settings and device 
permissions sometimes changed during the study due to 
automatic app updates, limiting data capture temporarily. 
Biometric and location data were at times challenging to 
collect given a range of device failures and the challenges 
of maintaining participant compliance with remote study 
protocols. The small number of participants varied in 
age, occupation, baseline physical activity level, hous-
ing, and daily time-activity patterns, which made it chal-
lenging to identify participant-wide patterns in complex 
biometric data related to heat. Despite these limitations, 
real-time data collection and quality control methods 
allowed us to minimize data gaps and remotely capture 
temperature measurements and biometric data. Also, 
our heterogeneous participants provided a wide range 
of qualitative answers useful for intervention planning. 
Where possible, future studies on heat adaptation should 

capture quantitative data on adaptation use characteris-
tics, allow for opened ended survey responses to add fur-
ther context, conduct a pre-study feasibility assessment 
of sensors, and implement a sensor usage schedule to 
support participants with varying levels of technological 
comfort [37].

Our findings were also limited by external circum-
stances. The physical distancing mandates in the early 
summer 2020 phase of the COVID-19 pandemic forced 
us to transition all methods to remote, postponing the 
study timeline from our initial start date of early June. We 
were unable to recruit up to 30 participants due to our 
limited capacity to effectively engage participants virtu-
ally during the pandemic. It took more time with each 
participant than would have been the case if we could go 
to their homes and install the sensors. This may also have 
influenced participant engagement, with meetings and 
interviews held online, then still a new format for par-
ticipants and researchers alike. That said, our generally 
robust data capture and interpretable findings reinforce 
the viability of remote qualitative and quantitative data 
capture for heat and other exposures.

Comparison to the literature
Our study contributes to the growing body of research 
using mixed methods to study heat-related exposures, 
resiliency, health awareness, and health outcomes. A 
mixed methods study of extreme heat vulnerabilities 
among older adults in Canada reported the importance of 
access to resources mitigating heat, although heat expo-
sures were not quantified among study participants [38]. 
Awareness of the health risks of high heat was assessed 
among a cohort of residents in Knoxville, TN, with only 
55% of respondents reporting concerns about the health 
risks of extreme heat [39]. Our specific finding about AC 
usage and efficacy has been demonstrated in other work. 
AC use as a mitigating strategy was reported qualitatively 
and quantitatively among older study participants in a 
cohort in Australia; however, outdoor temperatures were 
much higher than in this study (exceeding 38 °C), and 
AC units were successful in achieving an indoor plateau 
of temperatures [40]. Similarly, a Baltimore, MD study 
demonstrated AC efficacy among low-income residences 
with central air conditioning [41]. These studies, and 
ours, indicate opportunities to tailor local adaptation to 
AC use, develop public cooling services, and educate on 
the health impacts of extreme heat. Subsequent in-depth 
interviews with a subset of C-HEAT Study participants 
provided further insight into the financial decision-mak-
ing regarding AC usage, reasons for inadequate hydration 
at the workplace and at home (lack of sanitary facilities, 
fear of job loss, and low confidence in water safety), and 
heat related health concerns and behaviors [42].
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Our sleep findings differ from the literature, likely 
due to the heterogeneity of our participant population 
and modest sample size to evaluate the association 
Other studies of sleep and heat have focused primarily 
on older adults. A study of sleep quality among elderly 
participants in Shanghai, China, found that increased 
air temperature was correlated with decreased sleep 
efficiency and time asleep [43]. In a Northeastern US 
study of indoor temperatures and health in a cohort of 
older adults, researchers reported more disrupted sleep 
and increased heart rates at higher indoor tempera-
tures [44].

Studies of personal heat exposure also use a range of 
study designs and temperature exposure metrics, which 
limits comparability between results. Some studies that 
characterize exposures using personal temperature meas-
urements collect data for a week or shorter, or in occu-
pational settings, which differ greatly from residential 
settings not only in temperature extremes but also in par-
ticipant’s ability to control their surroundings [7, 8, 45–
47]. Research examining correlations between personal, 
indoor, and ambient temperature metrics found a wide 
range of correlation coefficients (R2 from 0.21 to 0.39 for 
personal-ambient, 0.4 for indoor-ambient, highlighting 
the importance of estimating exposure in micro-environ-
ments and the importance of seasonality in correlation 
strength [48, 49]. In this study the correlation between 
personal and ambient temperature was lower (R2 = 0.14), 
as was the correlation between indoor and ambient tem-
peratures (R2 = 0.13). A recent study found that time 
spent outside and income were more closely correlated 
with personal heat exposure than regional weather sta-
tion observations [50]. This same study suggested stand-
ardizing temperature exposure metrics in order to better 
characterize exposure as well as compare exposure meas-
urements across studies.

Conclusions
Mixed research methods provide a mechanism to cap-
ture rich contextualized data on heat exposures and 
adaptation practices, even in studies with small sample 
sizes. Personal-level behavior, residential characteristics, 
and daily activity patterns dictate exposures and influ-
ence resultant health outcomes and may not be ade-
quately estimated using ambient monitoring or survey 
data alone. Furthermore, understanding the current pat-
terns of use and efficacy of current adaptation practices, 
e.g., AC units, provides opportunity to build and improve 
on existing interventions, both from a quantitative per-
spective (e.g., a more effective unit), and qualitative (e.g., 
providing a subsidy to offset high electricity costs dur-
ing hot days, as identified by survey results). It is often 

the communities most vulnerable to heat exposures for 
whom data collection is most challenging; and thus, for 
which tailored resiliency interventions, characterized 
using mixed methods, can be most beneficial.
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